
Home Services Articles Presentations Books Speaking 2021 Social Media Database Links Contact Us

To Rebind or Not to Rebind: Why Is That Even a Question?
by Craig S. Mullins

The Buffer Pool
Winter 2010

One of the most important contributors to the on-going efficiency and health of your DB2 environment is proper
management of DB2 access path changes. A thorough REBIND management process is a requirement for healthy
DB2 applications.

But many shops do not do everything possible to keep access paths up-to-date with the current state of their
data. Approaches vary, such as rebinding only when a new version of DB2 is installed, whenever PTFs are applied
to DB2, or to rebind automatically after a regular period of time. Although these methods are workable, they are
less than optimal.

The worst approach though is the "if it ain’t broke don’t fix it" mentality. Shops that conform to this approach
never REBIND unless they absolutely have to. The biggest problem this approach creates is that it penalizes every
program in your environment because of the fear that one, or maybe a couple of SQL statements will experience
degraded access paths. This results in potentially many programs having sub-optimal performance because the
optimizer never gets a chance to create better access paths as the data changes.

Of course, the possibility of degraded performance after a REBIND is real – and that is why some sites have
adopted this approach. However, a best practices approach to rebinding DB2 programs would be to r regularly
REBIND and develop practical methods to deal with the troublemakers.

http://www.mullinsconsulting.com/index.html
http://www.mullinsconsulting.com/services.html
http://www.mullinsconsulting.com/articles.html
http://www.mullinsconsulting.com/presentations.html
http://www.mullinsconsulting.com/books.html
http://www.mullinsconsulting.com/speaking-2021.html
http://www.mullinsconsulting.com/social-media.html
http://www.mullinsconsulting.com/rellinks.html
http://www.mullinsconsulting.com/contact.html

The Five Rs

The best practice methodology for DB2 programs is to perform regular REBINDs as your data changes. This has
been summarized in the past as following The Three Rs, but as we will learn it is a few Rs short of being optimal.

So what are The Three Rs?

1. Regularly Reorganizing to ensure optimal structure

2. followed by RUNSTATS to ensure that the reorganized state of the data is reflected in the DB2 Catalog;

3. and finally, REBINDing all of programs that access the reorganized structures

This technique is professed to be able to improve application performance because access paths will be better
designed based on an accurate view of your data. But anyone attempting to implement this approach will notice a
few shortcomings. Trying to adopt The Three R’s approach raises questions, such as "When should you
reorganize?" To properly determine when to reorganize you’ll have to examine statistics. This means looking at
either RUNSTATS in the DB2 Catalog or, even better the Real-Time Statistics (RTS). RTS is better because the
statistics will be up-to-date without having to invoke a utility that will consume CPU resources. So, the first step
transforms The Three R’s into The Four 4 R’s – RTS, REORG, RUNSTATS, then REBIND.

Some organizations do not rely on statistics to schedule REORGs. Instead, they build reorganization JCL as they
create each object – that is, create a table space, build and schedule a REORG job, and run it monthly or
quarterly. This is better than no REORG at all, but it is not ideal because you are likely to be reorganizing too soon
(wasting CPU cycles) or too late (causing performance degradation until REORG). It is better to base your REORGs
off of thresholds on real-time statistics (or RUNSTATS statistics if you are still stubbornly avoiding RTS). In this
way you will be reorganizing at the right time, instead of based upon some pre-conceived (and probably
inaccurate) notion of when a REORG might be beneficial.

Statistics (those generated by RUNSTATS) are the fuel that makes the optimizer function properly. Without
accurate statistics the optimizer cannot formulate the best access path to retrieve your data because it does not
know how your data is currently structured. So when should you run RUNSTATS? One answer is "as frequently as
possible based on how often your data changes." To succeed you need an understanding of data growth patterns –
and these patterns will differ for every table space and index.

Additionally, there are multiple types of statistics that can be generated by RUNSTATS. The RUNSTATS utility can
gather statistics about table, indexes, and columns. The parameters you choose dictate what type of statistics are
generated and at what level of detail. You can also collect distribution statistics, correlation statistics and
histogram statistics. These can help when data is skewed or correlated.

So what type of statistics should you collect? Well, an in-depth discussion of that topic warrants an article all to
itself. But at a high level, you can follow these basic rules of thumb:

Always collect the base statistics (table and index)

Then collect column statistics for important WHERE and ORDER BY clauses

Collect Non-Uniform Distribution Statistics when data is skewed (e.g. beer drinkers skew male)

Collect correlation statistics when two or more columns are highly correlated (e.g. CITY, STATE, ZIP – the zip
code 02120 is in the city Boston is in the state Massachusetts).

Collect histogram statistics when data skews by range (e.g. Lunch rush or Christmas shopping season).

Getting back to our discussion on rebind strategy, we must keep in mind the reason we are running all of these
RUNSTATS and REORGs. And that is to improve performance, right? But only with regular REBINDs will your
programs take advantage of the new statistics to build more efficient access paths (except, of course, for dynamic
SQL which can use the new statistics the next time a dynamic access path is created).

So it makes sense to REBIND regularly as we run RUNSTATS and REORGs. But again, what about the potential for
degraded access paths? The optimizer is not perfect (though it is very good) and we are not perfect (perhaps not
collecting the correct level or amount of statistics). What is needed is a way to examine the results of a REBIND in
terms of its impact on SQL performance.

Without an automated method of comparing and contrasting access paths, DB2 program change management can
be time-consuming and error-prone, especially when we deal with thousands of programs.

Regularly rebinding means that you will need to review the resultant access paths and correct any "potential"
problems. Indeed, The Four Rs become The Five Rs because we need to review the access paths after rebinding to
make sure that there are no problems. So, we should begin an inspection of the realtime stats to determine when
to REORG. After reorganizing we should run RUNSTATS, followed by a REBIND. Then we need that fifth R – which
is to review the access paths generated by the REBIND.

The review process involves finding which statements might perform worse than before. Ideally, the DBAs would
review all access path changes to determine if they are better or worse. But DB2 does not provide any systematic
means of doing that. There are third party tools that can help you achieve this though. Such a tool will pre-run a
REBIND to generate new access path information without creating a new package. This information is compared to
the existing access paths and run through a set of rules to determine if the new access path is improved, worse,
or the same. Action can then be taken to avoid rebinding only those packages where the performance of any SQL
will degrade. And the DBAs can dig in to find out the cause of the degradation before rebinding the problem
packages.

The New REBIND Options Help, But…

Over the course of the past few releases IBM has added improvements to

the REBIND capability. An important one is PLANMGMT, or package stability,

which is a DB 9 for z/OS feature. It delivers the ability to keep backups

versions of your program’s access paths. Why is this useful?

Well, as we discussed earlier, after rebinding your program, sometimes access

paths degrade. When this occurs, PLANMGMT can be used to fall back to pre-

vious access paths (provided, of course, that we specified the appropriate

PLANMGMT option).

There are three options that can be chosen:

PLANMGMT(OFF) - No change to existing behavior. A package continues to have one active copy and no
backup access paths

PLANMGMT(BASIC) - A package has one active copy. One additional prior copy (PREVIOUS) is preserved.

PLANMGMT(EXTENDED) - A package has one active copy, and two additional prior copies (PREVIOUS and
ORIGINAL) are preserved.

Therefore, if you REBIND using either BASIC or EXTENDED you have a set (or sets) of insurance access paths that
can be called upon if you encounter degraded performance. To switch back to a previous access path you can
REBIND using the SWITCH parameter, as follows:

SWITCH (PREVIOUS) - changes the current and previous packages. The existing current package takes
the place of the previous package; The existing previous package takes the place of the current package.
This option works with both the BASIC and EXTENDED PLANMGMT options

SWITCH (ORIGINAL) - clones the original copy to take the place of the current copy; The existing current
copy replaces the previous copy; The existing previous copy is discarded. This works only with
PLANMGMT(EXTENDED).

As of DB2 10 for z/OS, which just recently became generally available, there will be a new REBIND parameter
named APRETAINDUP. This parameter is used in conjunction with EXTENDED or BASIC PLANMGMT. If set to NO old
copies are not saved if the new access paths are identical to the old. This is a useful option because the only
reason you would want to save a backup copy of access paths is if they were different, right?

IBM is also planning a few post-GA additions to DB2 10 for z/OS for access path management. The first is a nice
new capability called access path reuse. It will be implemented using the APREUSE parameter (for both BIND and
REBIND). If APREUSE(YES) is specified, DB2 will attempt the ability to reuse existing access paths. For a BIND, of
course, this will only be attempted for queries that have not changed.

Another planned parameter is the APCOMPARE parameter for access path comparison. This will allow DB2 to raise
a message when access paths change during a BIND or REBIND.

All of these newer options are useful, but they do not change The Five R’s best practice approach outlined above.
The PLANMGMT option is a reactive one and can be useful for problem packages. Having a way to go back to an

$53.99

DB2 Developer's
Guide: A...

Shop now

https://www.amazon.com/dp/B007Y6K9TK/ref=as_sl_pc_tf_til?tag=datamullins-20&linkCode=w00&linkId=b83da6888f6c2b96e9d9b086a0097bc0&creativeASIN=B007Y6K9TK
https://www.amazon.com/dp/B007Y6K9TK/ref=as_sl_pc_tf_til?tag=datamullins-20&linkCode=w00&linkId=b83da6888f6c2b96e9d9b086a0097bc0&creativeASIN=B007Y6K9TK
https://www.amazon.com/dp/B007Y6K9TK/ref=as_sl_pc_tf_til?tag=datamullins-20&linkCode=w00&linkId=b83da6888f6c2b96e9d9b086a0097bc0&creativeASIN=B007Y6K9TK
https://www.amazon.com/dp/B007Y6K9TK/ref=as_sl_pc_tf_til?tag=datamullins-20&linkCode=w00&linkId=b83da6888f6c2b96e9d9b086a0097bc0&creativeASIN=B007Y6K9TK
https://www.amazon.com/dp/B007Y6K9TK/ref=as_sl_pc_tf_til?tag=datamullins-20&linkCode=w00&linkId=b83da6888f6c2b96e9d9b086a0097bc0&creativeASIN=B007Y6K9TK

© 2021 Mullins Consulting, Inc. All Rights Reserved Privacy Policy Contact Us

From IDUG Solutions Journal, Winter 2010.

© 2012 Craig S. Mullins,

old access path can also be useful if it is missed during the fifth R (the review stage). And the new APCOMPARE
and APREUSE DB2 10 features will help us in terms of comparing and reusing existing access paths, but they will
not tell us whether changed access paths are good or bad.

The Bottom Line

DB2 shops should implement best practices by implementing an approach that conforms to The Five R’s. The fifth
R is the only step that requires additional tooling and/or manpower to accomplish. This involves testing access
paths to compare the before and after impact of the optimizer’s choices. Only by adopting such an approach will
you be optimizing your DB2 application environment in a way that doesn’t cause anxiety for the DBAs.

http://www.mullinsconsulting.com/Privacy.html
http://www.mullinsconsulting.com/contact.html
http://www.idug.org/p/cm/ld/fid=79

