The Object-
Oriented

~— Tutorial Series:
Part I

By Craig S. Mullins

n the February issue of Data Management
Review, we explored the perimeters of the
object-oriented (00) world. The information in
that article provided a road map to basic object-ori-
ented concepts for the data base professional. But
there is much more to learn. Let's peer deeper into
our object-oriented crystal ball to see if we can add

some depth to our OO knowledge.

Where Is That Information Hiding?

Well, I understand the basics. Let’s see, objects encapsulate
data and methods and are defined by means of a class hierarchy,
whereby the data and methods of parent classes are inherited
by subordinate classes. Now, what else can you tell me?

Quite a bit, actually, Consider encapsulation. Simply stating
encapsulation to be the combination of data and method under
one common object is not sufficient. Encapsulation also infers
that the data in an object can only be accessed and modified by
the methods included therein. This is a key concept. No
method can read or update the data in another object. The only
means of affecting the data in another object is for a method in
one object to pass a message to another object, invoking a
method encapsulared in that object.

T'his concepr is called information hiding, When implement-

ed properly, information hiding can increase reusability and
decrease software maintenance costs. For any given object, the
methods can be completely re-written and the data manipulat-
ed without impacting any other part of the system if the object
still responded the same way to the same messages.

Burt, to develop true object-oriented systems, one must
change herfhis entire way of thinking about software develop-
ment. Reusability does not just appear because you start using
0O techniques. It is incumbent upon the developer to com-
pletely plan every phase of the implementation to increase the
chance of reusability. Of course, object orientation increases the
likelihood that well-planned system development will be
reusable. Bur it simply does not guarantee it. This issue is key
to the acceprance of any new technology. There are no
panaceas. We must still work hard to produce accurate and
usable specifications. Further, we must use standard method-
ologies to develop the software from the specifications. Failure
to do so breeds chaos—and no technology, not even 00, will
rescue us from that fate.

More on this later. Let's resume our discussion of OO termi-
nology.

Object orientation also implies polymorphism.
Polymorphism can be thought of as almost synonymous to com-
monality. Let’s learn by example. Consider the automobile that
vou drive each day. What is the driver’s interface to that auto-
mobile? The gas pedal is long and thin and on the right. The
brake pedal is wide and to the left. A steering wheel controls
the movement of the car from left to right, and right to left. All
of this can be said without knowing anything about your car.
This information is generally true regardless of the make,

28 DATA MANAGEMENT REVIEW/ MAY 1993



model or year of your car. An automobile,
therefore, has a polymorphic interface.
The engine within each car that responds
to commands from the interface differs
by make, model and year, but the actual
interface is standard.

But, you may be thinking, American
cars have the steering wheel on the right
and Japanese cars have the wheel on the
left. Doesn’t this connote a lack of poly-
morphism? Not really. When I turn the
wheel, it moves the same way regardless
of its location within the car. Its location
is basically irrelevant.

A lack of polymorphism can be better
demonstrated by the switch that controls
the high beams of the car’s headlights.
On some models, this switch is on the
floor. It is activated by pressing it with
your foot. On other models, the switch is
on a lever extending from the steering
wheel. This switch is activated by tap-
ping it forward. The different interfaces,
each working in a different manner to
accomplish the same task, show a lack of
polymorphism.

So, objects hide information behind
polymorphic interfaces. But how are
objects identified? Although the concept
is simple, it must be stated. Every object
within an OO system or data base must
be uniquely identifiable. This should be
accomplished by means of an object iden-
tifier (OID). It is not at all clear within
the OO world as to whether the OID
should be system-generated or not. It is
also unclear as to whether a primary key
can serve the purpose of an OID. Suffice
it to say that the objects within an ODB
must be uniquely identifiable within the
system. The actual make-up and con-
struction of the OID is left to each indi-
vidual object-oriented data base manage-
ment system (OODBMS)
implementation.

However, as an aside, the availability
of a system-generated unique identifier
can be of great assistance. Think back to
the last time you implemented a data
base and one of the tables (or segments)
had no easily identifiable primary key.
Did you go without one? Did you gener-
ate a fake one programmatically? If it was
DB2, did you use a timestamp and cause
users to deal with its difficult 26-byte
character representation? Wouldn’t it
have been nice for the DBMS to handle
it for you? Many CODBMS implementa-
tions will automatically generate OIDs.

Stick Around Awhile

I like it. Information hiding reduces
the amount of work that the application
developer must do. Polymorphism
decreases the learning curve for both
users and developers by invoking similar
actions the same way. And, every distinct
object must be distinctly accessible. It
makes perfect sense. But, can you help
me with another OO term that I’ve heard
in the trade publications? Just what is
“persistence?”

When you are persistent with someone
or about something, you simply don’t
give up and won’t go away. Object persis-
tence is basically the same thing

But let’s back up and learn by exam-
ple. Consider the variables within a clas-
sic program, such as one written in
COBOL. As the program executes, the
variables take on values. When the pro-
gram stops, the variables go away. They
are not persistent. To keep the values in
between program runs, they must be
stored somewhere such as in a flat file, a
data base, a report, etc.

If you understand this concept, you
understand persistence. For ODBs,
objects are persistent. They are stored.
For OO programs, the entire state of the

Figure 1: Multiple Inheritance

Diplomat Liar Thief S:lp“‘i‘"
osses

Politician Sulgrdinate
osses

program can be persistent. In other
words, when an OO program terminates,
the state of all of its variables can be
saved until the next program execution.
So, persistence is just another way of say-
ing that the state of the data is stored
somewhere.

Another term that you may have heard
in conjuncrion with object crientation is
overloading. This is another simple con-
cept that makes a lot of sense in practice.
Simply stated, overloading is the assign-
ment of different meanings to the same
method name. The actual process that is
performed by the method differs by
object. For example, consider the pro-
gramming language, BASIC. Most imple-
mentations of BASIC overload the “+”
operator. When two numbers are operat-
ed upon by “+”, addition is performed.
However, when two character strings are
operated upon by “+”, the strings are
concatenated. Two very different opera-
tions are performed by the “+” operator
depending upon the type of variable.
Although the context of this example is
not object-oricnted, it does provide a
good introduction to the concept of over-
loading.

Inherit the Wind... And...

OK, OK, everything so far seems sim-
ple. I've heard that OO can get very com-
plex. It seems that if you just take some
time to understand the terminology, the
haze just lifts. Is it really this easy?

Yes and no. It is true that you must
understand the OO jargon before you can
understand the OO concepts. But OO can
be complex, too. For example, have you
heard about multiple inheritance?

Recall from the previous article in this
series that inheritance is the technique
whereby variables and methods from
higher level classes within a class hierar-
chy are available to be used by lower
level classes. But what if a lower level
class inherits from more than one higher
level class? Furthermore, what if some of
these higher level classes incorporate
some of the same methods and variables?
Consider the example shown in Figure 1.

In the example, the Politician class is
subordinate to the following classes:
Diplomat, Liar and Thief. The subordi-
nate class is often called the subclass; the
superior class is usually called the super-
class. If the method “Speak” is contained
in both the Diplomat class and the Liar
class, which one should the Politician
class inherit? Both? Either? Neither? This
question is still being debated within the

DATA MANAGEMENT REVIEW/ MAY 1993 29






