DATABASE MANAGEMENT
Emsse——smmaes e

Dynamic SQL For DB2

hat type of query will allow
DB2’s optimizer to make the
best use of the distribution sta-

tistics gathered by RUNSTATS in DB2
Version 2.2? When a distributed query is
executed at its remote site, what type of
SQL is used? When SQL is issued via
QMEF, SPUFI and DBEDIT, what type of
SQL is used? The answer to these ques-
tions is dynamic SQL.

The continued enhancement of the ca-
pabilities of dynamic SQL, coupled with
its growing acceptance and usage, will
create a need for more programmers and
analysts to become versed in the powers
of dynamic SQL. This article presents the
distinguishing characteristics of static
SQL, dynamic SQL and the four flavors
of dynamic SQL, and points out when to
use dynamic SQL from both a perform-
ance and a capability standpoint.

Static Vs. Dynamic SQL:
Differences

To compare and contrast these two types
of SQL it is necessary to establish a frame-
work. First, this article presents SQL only
as it applies to DB2. When SQL (either
dynamic or static) is mentioned, it is as-
sumed to be embedded SQL. Embedded
SQL is coded into an application program
as opposed to interactive SQL, which is
issued via SPUFI or QMF. SPUFI and
QMEF are both programs that contain em-
bedded dynamic SQL. When mentioning
programs into which SQL is to be embed-
ded, it is assumed there is a COBOL II
environment. VS/COBOL, FORTRAN, C,
PL/I and Assembler are the other languages
supported by DB2. However, FORTRAN
and VS/COBOL do not provide the capa-
bility to execute certain dynamic SQL
statements. These specific deficiencies will
be pointed out in the appropriate places.

ENTERPRISE SYSTEMS JOURNAL « DECEMBER 1991

By Craig S. Mullins

Throughout the article, various examples
are presented. In each case, these examples
use the sample tables provided with DB2
and available at the user’s site.

It is also assumed the basics of program-
ming static SQL for DB2 are known and
well understood. For this reason, basic DB2
coding conventions such as the SQLCA and
error handling will not be covered.

The primary difference between static and
dynamic SQL is described by the names
static and dynamic. A static SQL statement
is hard-coded and nonchanging. The col-
umns, tables and predicates are all known
beforehand and cannot be changed. Only
host variables which provide values for the
predicates may be changed. A dynamic SQL
statement, conversely, can change through-
out the course of a program’s execution. The
algorithms in the program can alter the SQL
prior to its execution. This means that, based
on the flavor of dynamic SQL being used,
the columns, tables and complete predicates
can be changed “on the fly” within an appli-
cation program.

As might be expected, dynamic SQL
varies from static SQL in the way the SQL
within the program is bound into applica-
tion plans. At this time, a basic refresher on
DB2 program preparation procedures is in
order. DB2 program preparation comprises
the steps necessary to make a DB2 program
executable. Refer to Example 1 for a
graphic representation of DB2 program
preparation. A source program containing
SQL must be passed through the DB2 pre-
compiler. This creates a Database Request
Module (DBRM) containing all the static
SQL in the program. A modified source
program is also created with the SQL com-
mented out and calls to DB2 substituted.
The normal compile/link process is exe-
cuted on the modified source. The DBRM,
however, must be passed through an addi-

tional step: the DB2 BIND process. BIND
will validate SQL syntax and authoriza-
tion, select access paths based on statistical
information in the DB2 Catalog and build
an application plan from the SQL and the
access path chosen.

Dynamic SQL, on the other hand, cannot
be bound prior to execution. If the SQL is
not known until the program executes, how
can it be verified beforehand? Further, how
can access paths be chosen for tables that
may not be known until the program exe-
cutes? For this reason, dynamic SQL is not
bound, but is prepared at execution time. A
PREPARE is functionally equivalent to dy-
namic BIND. At execution time, the pro-
gram issues a PREPARE statement prior to
issuing dynamic SQL (with one exception
as noted in the EXECUTE IMMEDIATE
section). PREPARE will verify, validate
and determine access paths dynamically.

Different Types Of Dynamic SQL

There are four distinct flavors of dy-
namic SQL: EXECUTE IMMEDIATE,
non-SELECT PREPARE/EXECUTE,
Fixed-List SELECT and Varying-List SE-
LECT. The first two do not allow SELECT
statements, whereas the last two are geared
specifically for SELECT statements.

EXECUTE IMMEDIATE

A program issuing an SQL statement by
means of the EXECUTE IMMEDIATE
flavor of dynamic SQL is limited to a sub-
set of SQL statements. The most important
are DELETE, INSERT, UPDATE and
COMMIT. If these are the only types of
SQL statements a program needs to exe-
cute, the code could be simple. Load the
dynamic SQL statement into a host vari-
able and issue an EXECUTE IMMEDI-
ATE. The statement will be automatically
prepared and executed.

21

Dynamic SQL

EXAMPLE 1

DB2 Program Preparation Process

DB2
> Precompller

DB2
> Catalog

Source
Program

> DBRM > BIND
\
Precompliled Source
v
Compller (or Assembler)

v
Compiled Source

v
Linkage Editor

\
Load Module

22

Example 2 shows how to DELETE rows
from a table. Note the simplicity of the
code. STRING-VARIABLE is a host vari-

able. It must be a character variable of

varying length.
It is important to note that despite EXE-

SystemView* and Automated

Operations

Technical Seminar

Confusedbyallthe claimsmade about Automated Operations? Technology Management
Associates give you more than the “sales pitch” given by software vendors. We offer an
intensive, vendor-independent one day seminar on automation of the enterprise and
preparing for IBM's SystemView systems management structure. Topics Include:

Q IBM's SystemView Q Planning and Automation Project
Q Howto Evalutean AOProduct Q How to Prepare an Organization for SystemView
Q Quality and Automation Q Justification for Automation

January 6 Houston, TX January 10 Washington, DC
January 17 Atlanta, GA January 24 Chicago, IL
February 3 Orlando, FL February 10 San Francisco, CA
February 14 Dallas, TX February 24 Boston, MA
February 28 Los Angeles, CA

Seminar Fee: $250

Call (504) 755-2267
to register or to receive more information

Technology Management fissociates
P.O. Bax 86777, Baton Rouge, LA 70879-6777

™ SystemView is a registered trademark of the IBM Corporation
CIRCLE #281 on Reader Service Card A

~
=

CUTE IMMEDIATE’s ease of use, it is
usually not the best choice for most applica-
tion programs due to potential performance
problems. This is primarily true if the same
SQL statement will be executed multiple
times in one invocation of an application
program. After an EXECUTE IMMEDI-
ATE is performed, the executable form of
the SQL is destroyed. This means each time
an EXECUTE IMMEDIATE statement is
issued, it must be prepared again. This is
done automatically and can involve a sig-
nificant amount of overhead.

A better choice might be to PREPARE
and then EXECUTE the non-SELECT dy-
namic SQL statement.

Non-SELECT PREPARE/EXECUTE

All dynamic SQL can be logically bro-
ken down into two steps: PREPARE and
EXECUTE. This flavor of dynamic SQL
accomplishes this breakdown. Example 3
depicts Example 2 modified to use PRE-
PARE/EXECUTE instead.

A useful feature of dynamic SQL,
known as a parameter marker, is used as
a place holder for host variables in a dy-
namic SQL statement. For example, the
SQL in Example 3 substitutes a question
mark (?) in place of the 'ACO’ in the
predicate. The question mark is the pa-
rameter holder. When the statement is
executed, a value is moved into the host
variable (in this case :TVAL) and coded
as a parameter to the CURSOR by means
of the USING clause.

On the surface this appears to be more
difficult to code and it is, slightly. It is not,
however, overly complicated and can pro-
vide huge performance benefits. Consider,
for example, if a program is executing SQL
statements as in Examples 2 and 3, but is

basing the DELETE on input from a file. A

loop reads the values from the file and
issues the DELETE. With EXECUTE IM-
MEDIATE, a PREPARE is done for every
new DELETE inside the loop. With PRE-
PARE/EXECUTE the PREPARE can be
isolated outside the loop. The value that
provides the condition for deleting can be
substituted via a host variable and a pa-
rameter marker. If there were thousands of
DELETE statements to be executed, then
thousands of PREPARES could be avoided
using this technique. Reduced overhead,
reduced run time and increased efficiency
would result.

However, most embedded SQL pro-
grams that issue DELETE statements also
perform DB2 COMMIT processing to in-
crease concurrency and limit reprocessing
in the event of an abend. After each COM-

ENTERPRISE SYSTEMS JOURNAL « DECEMBER 1991

L I S VI

— T —

o

- —— —— = T T —

comm— e ™

e

Dynamic SQL

MIT issued, dynamic SQL statements must
be prepared again.

Fixed-List SELECT

The first two flavors of dynamic SQL are
useful for performing many different types
of SQL statements. They, however, are not
helpful for executing the most frequently
used SQL statement: the SELECT state-
ment. SELECT is the only SQL statement
that will read data from a DB2 table.

There are two flavors of dynamic SQL

that allow SELECT statements to be issued.
The first and simplest is the Fixed-List SE-
LECT. To use a Fixed-List SELECT, the
exact columns to be returned must be known
and unchanging. This is necessary to create

the proper working-storage declaration for
host variables in the COBOL II program. If
the user does not know in advance the exact

columns to be accessed, he cannot use
Fixed-List SELECT, but must use Varying-
List SELECT.

Fixed-List SELECT is illustrated in Ex-
ample 4. A SELECT statement is formu-
lated within the application program and
moved to the STRING-VARIABLE. Fol-
lowing this, a cursor is declared and the

SELECT statement is prepared. The cursor

is then opened after which a loop to
FETCH rows is invoked. When complete,
the cursor is closed.

The previous example simplifies things
considerably. The true benefit of dynamic

SQL is the ability to modify the SQL. For

example, the SELECT statement in Exam-
ple 4 could be modified by the application
program in many ways. One way is chang-
ing the columns referenced in the WHERE
clause. It is important, however, that the
host variables passed as parameters in the
OPEN statement be of the same data type
and length as the columns in the WHERE
clause. If the data type and length of the
columns in the WHERE clause change, the
OPEN statement must be recoded with new
USING parameters.

If parameter markers are not used in the
SELECT statements, they could be elimi-
nated and specific values could be substi-
tuted in the SQL to be executed. No
parameters would then be passed in the
OPEN statement.

The OPEN statement could also be re-
coded to pass parameters using an SQL
Descriptor Area (SQLDA). Using the
SQLDA in this manner is beyond the scope
of this article. -

Quite a bit of flexibility is offered by
Fixed-List SELECT dynamic SQL. If,

however, the additional flexibility of

changing the columns to be accessed while

ENTERPRISE SYSTEMS JOURNAL ¢ DECEMBER 1991

WHERE DEPTNO = ‘AG0";

EXEC SaQL

EXECUTE IMMEDIATE Example
SQL to execute: DELETE FROM DSN8220.PROJ

Move the “SQL to execute” to STRING-VARIABLE

EXECUTE IMMEDIATE :STRING-VARIABLE;

WHERE DEPTNO = ?

Move ‘A00" to TVAL
EXEC SQL EXECUTE CSR1 USING :TVAL;

Non-SELECT PREPARE/EXECUTE Example
SQL to execute: DELETE FROM DSN8220.PROJ

Move the “'SQL to execute” to STRING-VARIABLE
EXEC SQL PREPARE CSR1 FROM :STRING-VARIABLE;

executing is needed, DB2 provides that
functionality with Varying-List SELECT.

Varying-List SELECT

Varying-List SELECT provides the most
flexibility for dynamic SELECT statements.
Changes can be made “on the fly” to tables,
columns and predicates. Because everything
about the query can change during one invo-

cation of the program, the number and type
of host variables needed to store the re-
trieved rows cannot be known beforehand.
This will add considerable complexity to
application programs. In fact, FORTRAN
and VS/ COBOL programs cannot perform
Varying-List SELECT dynamic SQL state-
ments (unless an Assembler routine is called
to handle the address variable pointers).

fom cnviron-
ment siabde!

storage.

If these tssues concern
Nou, Laomraeare can
help with w complew
1 g and

T .!Hf.\'. }"m'

r Batch

{. envion-

CLompraeare
has the soludon.

DOS/VSE Testing and
Debugging Tools
Now Awailable for VSE/ESA

Ahsnd-Alll”(Batch) — intercepts, analyzes abends then recom-
mends corrective action. Alfows "Snap* at run time to display working

CICS Abend-AID®— intercepts, analyzes fransaction abends then
provides a concise diagnostic report from an on line directory.

XPEDITER®/CICS (formerly CICS dBUG-AID) — for interactive
CICS debugging, program lagic correction, and storage violation
gml}leclion. Now supports COBOL I File utility supports VSAM and

CICS PLAYBACK and EICS SIMULCAST — captures, customizes
*scripts® for network testing. Supports training and help desk.

For more information, or a no-cost 30-day evaluation, call
1-800-535-8707 and ask for your VSE representative.

€% COMPUWARE

[gef, Sophistcated Software Used Every Day

AT

CIRCLE #67 on Reader Service Card A

23

Dynamic SQL

EXAMPLE 4

FROM DSN8220.PROJ
WHERE PROJNO =7?
AND PRSTDATE = ?

Loop until no more rows to FETCH
EXEC saL

EXEC SQL CLOSE CSR2;

Move the “SQL to execute” to STRING-VARIABLE

EXEC SQL DECLARE CSR2 CURSOR FOR FLSQL;
EXEC SQL PREPARE FLSQL FROM :STRING-VARIABLE;
EXEC SQL OPEN CSR2 USING :TVAL1, :TVAL2;

Fixed-List SELECT Example
SQL to execute: SELECT PROJNO, PROJNAME, RESPEMP

FETCH CSR2 INTO :PROJNO, :PROJNAME, :RESPEMP;

EXAMPLE 5

SQLDA Data Element Definitions

Name Usage In DESCRIBE or PREPARE statement

SQLDAID descriptive only

SQLDABC [ength of SQLDA

SGLN total number of occurrences of SQLVAR avallable

sQLD total number of occurrences of SQLVAR actually used

SQLTYPE Indicates data type and whether or not NULLs are allowed for the column
SQLLEN externa! length of the column value

SQLDATA address of a host-variable for a specific column

SQLIND address of NULL Indicator variable for the above host-varlable
SQLNAME contains the name or label of the column

EXAMPLE 6

EXEC SQL

EXEC SQL OPEN CSR3;
Load storage addresses Into the SQLDA
Loop until no more rows to FETCH

EXEC SQL CLOSE CSR3;

Move the “SQL to execute” to STRING-VARIABLE
EXEC SQL DECLARE CSR3 CURSOR FOR VLSQL;

Varying-List SELECT Example
SQL to execute: SELECT PROJNO, PROJNAME, HESPEMP

FROM DSN8220.PROJ
WHERE PROJNO = 'A00'
AND PRSTDATE = '1988-10-10';

PREPARE VLSQL INTO SQLDA FROM :STRING-VARIABLE;

EXEC SQL FETCH CSR3 USING DESCRIPTOR SQLDA;

The vehicle for communicating informa-
tion about dynamic SQL between DB2 and
the applications program is called the
SQLDA. It will contain information about
the type of SQL statement to be executed,
the data type of each column accessed and
the address of each host variable needed to
retrieve the columns. The SQLDA must be
hard-coded into the COBOL II program.
Refer to Example S for a definition of each
item in the SQLDA when it is used with
Varying-List SELECT.

The steps needed to code Varying-List
SELECT dynamic SQL into an application

26

program will vary according to the amount
of information known about the SQL be-
forehand. Example 6 details the steps nec-
essary when it is known that the statement
to be executed is indeed a SELECT state-
ment. The code differs from Fixed-List SE-
LECT in three ways: the PREPARE step
and the FETCH statement use the SQLDA
and a new step is added to store host vari-
able addresses into the SQLDA.

When the PREPARE is executed, DB2
returns information about the columns
that are being returned by the SELECT
statement. This information is in the SQL-

VAR group item of the SQLDA. Of par-
ticular interest is the SQLTYPE field. For
each column to be returned, this field will
tell the data type and whether or not
NULLS are permitted.

The applicable values for SQLTYPE
can be coded as 88-level COBOL struc-
tures to aid in the detection of the data
type for each column. Consult the DB2
Application Programming Guide (SC26-
4377) for alist of valid values. The appli-
cation program issuing the dynamic SQL
must interrogate the SQLDA analyzing
each occurrence of SQLVAR. This infor-
mation is used to determine and derive the
address of some storage area of the proper
size to accommodate each column re-
turned. This address is then stored in the
SQLDATA field of the SQLDA. If the
column can be NULL, the address of the
NULL indicator is stored in the SQLIND
field of the SQLDA. When this analysis
is complete, rows can be fetched from it
using Varying-List SELECT and the
SQLDA information.

Note that the group item, SQLVAR, oc-
curs 300 times, the limit for the number of
columns that can be returned by any one
SQL SELECT. This number can be modi-
fied by changing the SQLN field to a
smaller number, but not a larger one. Cod-
ing a smaller number will reduce the
amount of storage required, but if a greater
number of columns is returned by the dy-
namic SELECT, the SQLVAR fields will
not be populated.

It is also possible to code dynamic SQL
without knowing anything at all about the
statement to be executed. This is the case if
there is a program that needs to read SQL
statements from a terminal and execute them
regardless of statement type. This is done by
coding two SQLDAs: one minimal SQLDA
to PREPARE the statement and determine
if it is a SELECT or not. If it is not, simply
EXECUTE the non-SELECT statement. If
itis a SELECT, PREPARE it a second time
with a full SQLDA and follow the steps in
Example 6.

General Dynamic SQL Issues

Dynamic SQL is a complex topic and can
be difficult to comprehend and master. It is
important to keep the following general
rules in mind when deciding whether or not
to use dynamic SQL:

e Dynamic SQL can change during the

course of a program

e Dynamic SQL is always prepared dur-

ing the execution of the program;
preparation (BIND) is accomplished
prior to execution for static SQL.

ENTERPRISE SYSTEMS JOURNAL + DECEMBER 1991

. R Tl e e N
SR N e «_,Jh@tﬂ_ﬁﬂ.hmk‘“‘uwm) P O T W N - T

Dynamic SQL

An organization’s specific procedures for
dynamic SQL should always be followed.

Also, not every SQL statement can be
executed as dynamic SQL. Most are SQL
statements that provide for the execution of
dynamic SQL or row-at-a-time processing.

Performance Implications Of
Dynamic SQL

The performance of dynamic SQL is one
of the most widely debated DB2 issues.
Some shops avoid it altogether and most of
those who allow it place strict controls on
its usage. This is wise as of DB2 2.2. How-
ever, as new and faster versions of DB2 are
released, some restrictions on dynamic
SQL usage should be eliminated.

It may be best to avoid most dynamic
SQL. Dynamic SQL statements are usually
just a series of static SQL statements in
disguise. Admittedly, the static SQL might
take more time to code, but it will usually
take less time to execute. If there is a com-
pelling reason to use dynamic SQL, ensure
the argument is sound and complies with
the guidelines that follow.

Reasons To Use Dynamic SQL

Most users are aware that in certain
circumstances there are valid reasons for
prohibiting dynamic SQL. Sometimes,
however, there are valid performance rea-
sons for requiring dynamic SQL.

DB2 2.2 will populate the DB2 Catalog
(SYSIBM.SYSFIELDS table) with distri-
bution statistics. For columns that partici-
pate as the first column in an index, the 10
most frequently appearing values in that
column will be stored along with the num-
ber of occurrences for each. For DB2 2.2
this information will only be used by the
optimizer for dynamic SQL and static SQL
with hard-coded, literal predicates. Static
SQL predicates using host variables will
still assume even distribution. Therefore, if
indexed data is greatly skewed from even
distribution, using dynamic SQL may
prove advantageous.

As of DB2 2.2, when the LIKE predicate
is used in static SQL with a host variable,
an index will never be used. This is because
the optimizer cannot determine what value
will be placed into the host variable. If it
begins with a wild card (that is, _or %) an
index cannot be used because the first char-
acter could be any character. If the LIKE
clause is built into the dynamic SQL, the
DB2 optimizer can determine whether that
first character is a wild card or not. If it is
not, an index might be used (if all other
conditions for index usage are met). DB2
2.3 will enable LIKE predicates using host

28

variables to be indexable when the host
variable does not begin with a wild card
character.

Dynamic SQL may also be in order for
access to active tables that fluctuate be-
tween many and few rows between RUN-
STATS executions. Increasing the
frequency of RUNSTATS before using dy-
namic SQL is recommended, but this may
not always be possible for every case.

Another reason to use dynamic SQL is to
allow programs to take advantage of the
capabilities of QMF using the QMF Com-
mand Interface (QMFCI). Dynamic SQL is
used whenever QMF is used to access DB2
data. Some of the functionality provided by

The continued
enhancement of
dynamic SQL, coupled
with its growing
acceptance and usage,
will create a need for
more programmers
and analysts to
become versed in
dynamic SQL.

the QMFCI includes scrolling and format-
ting data. In certain circumstances, the ad-
dition of these capabilities may offset the
potential performance degradation caused
by dynamic SQL.

Reasons Not To Use Dynamic SQL

Usually dynamic SQL will be less effi-
cient than static SQL because of the PRE-
PARE required during program execution
with dynamic SQL. Static SQL is prepared
(bound) before execution.

Also, on-line transaction-based systems
require well-designed SQL to execute with
sub-second response time. If dynamic SQL
is allowed, the chances that the system will
have well-designed SQL diminishes. If a
program can change the SQL “on the fly,”
then the control required for on-line systems
is relinquished and performance may suffer.

Fixed-List SELECT dynamic SQL usu-
ally reduces the chance for index-only scan
access being chosen. This will be true if a
program contains one SELECT statement
per table regardless of which columns are

chosen. This type of SELECT retrieves all
columns in the table and returns to the user
only those needed. All the columns are
always returned causing DB2 to incur a
read to the tablespace as well as to any
index identified for the access path. An
index-only scan can never be chosen under
these circumstances. This is an unwise de-
sign choice and should be avoided.

Most programmers will not take the time
to design a dynamic SQL application prop-
erly if it requires SELECTs. Often, Vary-
ing-List SELECT is needed for proper
performance and Fixed-List SELECT is
used instead to avoid using the SQLDA and
pointer variables.

Dynamic SQL is more difficult to tune
because it changes with each execution of
a program. It cannot be traced using the
DB2 Catalog tables (SYSDBRM, SYS-
PLANREF, SYSPLAN) because it is not
bound into any application plan, further
complicating the issue of tuning.

Proper administration of the Resource
Limit Facility (RLF) is needed to control
DB2 resources when dynamic SQL is exe-
cuted. Thresholds for CPU usage are coded
into the RLF on an application basis. When
the RLF threshold is reached, the applica-
tions program will not abend. An SQL error
code will be issued when any statement ex-
ceeds the predetermined CPU usage. This
environment requires additional support
from a DBA standpoint for RLF administra-
tion and maintenance, as well as additional
work from an application standpoint for en-
hancing error handling procedures.

Finally, IBM’s recommendation is to
use dynamic SQL only if its flexibility is
required.

Conclusion

Dynamic SQL is an important compo-
nent of DB2. It is used in many commercial
products toeday and, as such, a sound under-
standing of its capabilities is required. £

ABOUT THE AUTHOR

Craig S. Mullins,
with more than six
years of database
management systems
experience, is a sen-
ior database analyst
Jor Duquesne Light
Company, a large,
eastern electric utility. He is also
vice president and cofounder of a
consulting and software develop-
ment firm, ASSET, Inc., P.O.Box
2547, Pittsburgh, PA 15230.

ENTERPRISE SYSTEMS JOURNAL « DECEMBER 1991

TN

L e—— e —

U

T e bk ST L ’"-““”“"'——'1\.—‘-\»_.'....__ L IR T

B U

