CRAIG S

M U L LI

N S

The Procedural DBA

Assertions,business
rules, and daz‘a&ase?
enforced constraints
are the wave of the
Sfuture: so are
intelligent agents,
stored procedures,
and the rest. To
manage, DBAS
must change their

strz'pes—again

NTIL RECENTLY, THE DO-
main of a database management
system (DBMS) was, appropriately
enough, to store, manage, and ac-
cess data. Although these core ca-
pabilities are still required of modern
DBMS products, additional procedural
functionality is slowly becoming not just
a nice feature to have, but a necessity.
The ability to define business rules to the
DBMS instead of in a separate applica-
tion program builds upon the concept of
data sharing. However, instead of merely
sharing data, modern DBMSs will enable
applications to share both common data
elements and code elements.
Specifically, all the most popular rela-
tional DBMS (RDBMS) products are
adding more and more complex features
and components to facilitate procedural
logic. This occurrence requires organiza-
tions to expand the way they have tradi-
tionally handled database management and
administration. Typically, as new features
are added, administrating, designing, and
managing these features is assigned to the
database administrator (DBA) by default.
This approach is not always the best one.
This article will discuss the different
physical implementations of business rule
support and their impact on the DBA’s role.

THE CLASSIC ROLE OF THE DBA

Just about every database language pro-
grammer has his or her favorite curmud-
geon DBA story. You know, those famous
anecdotes that begin with “I have a prob-
lem...”and end with“. .. and thenhe
told me to stop bothering him and read
the manual.” DBAs simply do not have a

“warm and fuzzy” image. Their image
probably has more to do with the nature
and scope of the job than anything else.
The DBMS spans the enterprise, effec-
tively placing the DBA on call for the en-
tire organization’s applications.

To make matters worse, the DBA’s role
has expanded over the years. In the pre-
relational days, database design and data
access were complex. Programmers were
required to code program logic explicitly
to navigate the database and access data.
Typically, the prerelational DBA was as-
signed the task of designing the hierar-
chical or network database design. This
process usually consisted of both logical
and physical database design, although it
was not always recognized as such at the
time.

Once the database was planned, de-
signed, and generated, and the DBA cre-
ated backup and recovery jobs, little more
than space management and reorganiza-
tions were required. This is not to belit-
tle these tasks. The prerelational DBMS
products such as IMS and IDMS required
a complex series of utility programs to be
run in order to perform backup, recovery,
and reorganization. This process consumed
a Jarge amount of time, energy, and effort.

As RDBMS products gained popu-
larity, the role of the DBA expanded. Of
course, DBASs still designed databases, but
increasingly these were generated from
logical data models created by data admin-
istration staffs. The up-front effort in de-
signing the physical database was reduced,
but not eliminated. Relational design still
required physical implementation deci-
sions such as indexing, denormalization,

40

DATABASE PROGRAMMING & DESIGN



and partitioning schemes. But, instead of
merely concerning themselves with phys-
ical implementation and administration
issues, DBAs found that they were becom-
ing more intimately involved with proce-
dural data access.

RDBMSs require additional involve-
ment during the design of data access rou-
tines. No longer were programmers nav-
igating the data—now the RDBMS was.
Optimizer technology embedded into the
RDBMS was responsible for creating the
access paths to the data. The DBA had to
review optimization choices. Program and
SQL design reviews became a vital com-
ponent of the DBA job. Furthermore, the
DBA took on additional monitoring and
tuning responsibilities. Backup, recovery,
and REORG were just a start. Now, DBAs
used EXPLAIN, performance monitors, and
SQL analysis tools to administer RDBMS
applications proactively.

Often, DBAs weren't adequately trained
in these areas. It is a completely different
skill to program than it is to create well-
designed relational databases. DBAs, more
often than not, found that they had to be
able to understand application logic and
programming techniques to succeed.

STORING PROCESS WITH DATA

RDBMS products are maturing and gain-
ing more functionality. The clear trend is
that more and more procedural logic is be-
ing stored in the database. One of the most
common forms of logic stored in the data-
base is the exit routine. An exit routine—
such as an EDITPROC or a VALID-
PROC in DB2 for MVS—is usually coded
in Assembler language (sometimes a 3GL

such as COBOL is permitted). This code
is then attached to a specific database ob-
ject and is executed at a specified time, such
as when data is inserted or modified.

Exit routines have been available in
DBMS products for many years, and are
typically the DBA’s responsibility to code
and maintain. But exit routines are merely
the tip of the iceberg. The most popular
and robust RDBMS:s also support addi-
tional forms of database-administered pro-
cedural logic known as stored procedures,
triggers, constraints, assertions, and user-
defined functions (UDFs).

Stored procedures are procedural logic
that is maintained, administered, and ex-
ecuted through the RDBMS. The primary
reason for using stored procedures is to
move application code off the client work-
station and onto the database server. This
setup typically results in less overhead be-
cause one client can invoke a stored pro-
cedure and cause the procedure to invoke
multiple SQL statements. This approach
is preferable to the client executing mul-
tiple SQL statements directly because it
minimizes network traffic, which can en-
hance overall application performance. A
stored procedure is not “physically” asso-
ciated with any other object in the data-
base. It can access and/or modify data in
one or more tables. Basically, you can think
of stored procedures as “programs” that
“live” in the RDBMS.

Triggers are event-driven specialized
procedures that are stored in and executed
by the RDBMS. Each trigger is attached
to a single, specified table. Think of trig-
gers as an advanced form of “rule” or “con-
straint” written using procedural logic.

[}

[t}

O
]

A trigger cannot be directly called or ex-
ecuted; it is automatically executed (or
“fired”) by the RDBMS as the result of
an action—usually a data modification to
the associated table. Once you create a
trigger, it is always executed when its “fir-
ing” event occurs (for example, UPDATE, IN-
SERT, DELETE, and so on). Figure 1 shows the
difference between stored procedures and
triggers.

A constraint is a database-enforced
limitation or requirement, coded into the
definition of a table, which is nonbypass-
able. Most experienced RDBMS users are
familiar with unique constraints and ref-
erential constraints. A unique constraint
forbids duplicate values to be stored in a
column or group of columns. Referential
constraints define primary and foreign
keys within two tables that define the
permitted, specific data values that can be
stored in those tables. Although they are
both forms of constraints, they are also
predefined to the DBMS and cannot be
changed. Both unique and referential
constraints do, however, require quite a
bit of administration and management. A
newer type of constraint, known as a
check constraint, is now gaining accep-
tance in RDBMS products. Check con-
straints are used to define the exact re-
quirements for values that can be stored
in a specific table. You can define a wide
range of rules using check constraints
because they are defined using the same
search conditions that are used in SQL
WHERE clauses. Some sample check con-
straints follow:

CHECK (REGISTERED IN (“T:"F")

DECEMBER 1995

41



Implicitly Executed

Stored
Procedure

FIGURE 1. Triggersvs.stored procedures.

CHECK (MONTH BETWEEN 1 AND 12)
CHECK (SALARY < 75000)

An assertion is basically a free-standing
check constraint. Whereas check con-
straints are explicitly defined within a sin-
gle table’s DDL, an assertion is defined
outside the scope of any table. This fact
limits the flexibility of a check constraint.
Assertions are usually created to enforce
restrictions that span more than one table.
An assertion, once defined, operates basi-
cally the same as a check constraint. The
following is an example of an assertion:

CREATE ASSERTION vehicles_in_stock
CHECK ( (SELECT COUNT(*) FROM TRUCK_TABLE) +
(SELECT COUNT(*) FROM CAR_TABLE)
<1500
)

This assertion will enforce the business
rule that a total of no more than 1,500
trucks and cars can be kept in stock at any
one time.

A UDF provides a result based upon
a set of input values. UDFs are programs
that can be executed in place of standard,
built-in SQL scalar or column functions.
A scalar function transforms data for each
row of a result set; a column function eval-
uates each value for a particular column
in each row of the results set and returns
a single value. Once written and defined
to the RDBMS, a UDF becomes avail-
able just like any other built-in function.

Stored procedures, triggers, constraints,
assertions, and UDFs are just like other
database objects such as tables, views, and
indexes, in that the DBMS controls them.
These types of objects are often collectively
referred to as server code objects (SCQOs)

because they are actually program code
that is stored and maintained by a data-
base server as a database object. Depend-
ing upon the particular RDBMS imple-
mentation, these objects may or may not
“physically” reside in the RDBMS. They
are, however, always registered to, as well
as maintained in conjunction with, the

RDBMS.
INTELLIGENT AGENT TECHNOLOGY

Though not strictly a server code object,
many products are incorporating intelli-
gentagents. This technology provides in-
teroperable, compatible programs that op-
erate in a fault-tolerant, secure memory
space to perform a specific task or tasks
automatically. Agents are sometimes re-
ferred to as good viruses. An example of

SELECT

a primitive agent is a word processor that
automatically corrects misspellings as you
type (without requiring a “spell check” to
be requested explicitly). None of the cur-
rently popular RDBMS products support
intelligent agent technology, but many
supporting products such as performance
monitors do. Look for the incorporation
of intelligent agents into RDBMS prod-
ucts soon.

Why are server code objects so popu-
lar? The predominant reason for using
SCOs is to try and promote code reusabil-
ity. Rather than replicating code on mul-
tiple servers or within multiple application
programs, SCOs enable code to reside in
a single place: the database server. SCOs
can be automatically executed based upon
context and activity or can be called from
multiple client programs as required—
which is preferable to cannibalizing sec-
tions of program code for each new ap-
plication that must be developed. SCOs
enable logic to be invoked from multiple
processes instead of being recoded into
each new process every time the code is
required.

An additional benefit of SCOs is in-
creased consistency. If every user and every
database activity (with the same require-
ments) is assured of using the SCO instead
of multiple, replicated code segments, then
the organization can be assured that every-
one is running the same, consistent code.
If individual users used their own indi-
vidual and separate code, there would be
no assurance that the same business logic
was being used by everyone. In fact, it is al-
most a certainty that inconsistencies would

occur.
Additionally, SCOs are useful for re-

INSERT

UPDATE

DELETE

FIGURE 2. Network traffic can cause performance problems without stored procedures.

412

DATABASE

PROGRAMMING & DESIGN



ducing the overall code maintenance ef-
fort. Because SCOs exist in a single place
(the RDBMS), you can make changes
without having to propagate the change
to multiple workstations.

Another common reason to use SCOs
is to enhance performance. A stored pro-
cedure, for example, may result in en-
hanced performance because it is typically
stored in parsed (or compiled) format,
thereby eliminating parser overhead. Ad-
ditionally, in a client/server environment,
stored procedures will reduce network traf-
fic because multiple SQL statements can
be invoked with a single execution of a pro-
cedure instead of sending multiple requests
across the communications lines (refer to
Figures 2 and 3).

Finally, SCOs can be coded to support
database integrity constraints, implement
security requirements, reduce code main-
tenance efforts, and support remote data
access.

Database server support for server
code objects. All of the most popular
RDBMS products provide some level of
support for SCOs. Of course, the man-
ner in which they are supported differs
from product to product because no uni-
versal standard for SCO implementation
exists. Consult the grid in Table 1 for a list-
ing of which RDBMSs support which
SCOs.

It is important to try and understand
the differences in the way these RDBMSs
support SCOs. Organizations that must
support and administer more than one
RDBMS product will need to understand
the differences, some of them subtle, and
implement accordingly without confus-

Triggers

Schedules Startof Pro_E- |
Stored Proc ;
Process the SELECT
SQL SELECT -~
Process the INSERT
SQL INSERT
- Process the UPDATE
Application SQL UPDATE =
Reduced L DHETE
NetworkTraffic i
DBMS

FIGURE 3. Performance problems can be diminished with stored procedures.

ing features and functionality from prod-
uct to product. Additionally, organizations
evaluating which RDBMS to implement
should delve into the product implemen-
tation and usage details to uncover the sub-
tleties of each product. Rarely is a simple
checklist of features sufficient for decision-
making purposes.

+ Oracle7 supports the creation of func-
tions, which are actually procedures that
return a value. They differ from UDFs,
which must be used in the context of an
SQL statement.

+ Sybase and Informix stored proce-
dures can return values (similar to Oracle
functions).

+ Sybase assertions are called rules. Al-
though created as free-standing objects,

~ Stored
Procedures

Check

Constraints

rules must be bound to particular tables
and columns before they are enforced.

+ DB2 supports the VALIDPROC,
EDITPROC, and FIELDPROC exit
routines. They are similar to triggers, but
do not provide the same functionality.

For example, if it is important that
the RDBMS you are considering support
stored procedures, there would appear to
be little difference among the major play-
ers after examining the information in
Table 1. All of them support stored pro-
cedures. However, each product provides
stored procedure support in entirely dif-
ferent ways and with differing function-
ality. DB2 stored procedures are written
in a traditional programming language and
then registered to the DBMS. Oracle,

Assertions

Yes

Yes

Oracle7

m10

Informixv. 6 Yes Yes No No
DB2forMVSv.4  No* Yes Yes No No

DB2 for MVSv. 3 No*

1. Oracle7 supports the creation of functions, which are actually procedures that return a value. They differ from UDFs, which must be used in the context of
an SQL statement.

2. Sybase and Informix stored procedures can return values (like Oracle functions).

3. Sybase assertions are called rules. Although created as free-standing objects, rules must be bound to particular tables and columns before they are enforced.

4. DB2 supports the VALIDPROC, EDITPROC, and FIELDPROC exit routines. They are similar to_ triggers, but do not provide the same functionality.

TABLE 1. S(0supportinthe major RDBMS products.

DECEMBER 1995 43



Sybase, and Informix, however, have ex-
tended versions of SQL that are used for
stored procedures. And each of these ex-
tensions provides different syntax and
functionality.

To clarify this point further, consider
the support for triggers in the RDBMS
products that provide trigger support. Each
uses a different language syntax and fur-
nishes a different set of features. For ex-
ample, Oracle and Informix triggers are
much more flexible than Sybase’s. Using
Oracle or Informix, a developer can spec-
ify whether the trigger should be exe-
cuted before the firing activity or after it.
Sybase triggers always fire after the firing
activity occurs. This feature can greatly
impact your database and application de-
sign. With Sybase, it is impossible to per-
form any activity in a trigger if it has to
occur before the event that invokes the
trigger. Furthermore, Oracle and Infor-
mix triggers can be fired once per firing
activity or once per row impacted by the
firing activity. Remember that a single
SQL UPDATE statement can modify multiple
rows. It might be beneficial to run trigger
code for each row impacted, instead of one
global trigger for the entire activity. Sybase
only provides a single execution per firing
activity.

Each of the major DBMS:s that pro-
vides trigger support differs dramatically
in the syntax and implementation specifics
for triggers. Both Sybase and Oracle en-
able triggers to be written using their en-
hanced SQL dialect. Triggers in these
DBMSs actually contain procedural logic.
Informix triggers, on the other hand, must
call a stored procedure that contains the

SPL to be executed when the trigger is
fired. An Informix trigger simply speci-
fies the types of conditions under which
one or more stored procedures should be
run. The bottom line is that we really need
some standardization in the area of SCO
support!

Server code object programming lan-
guages. Being application logic, most server
code objects must be created using some
form of programming language. Check
constraints and assertions do not require
procedural logic since they can typically
be coded with a single predicate. Although
different RDBMS products provide dif-

ferent approaches for SCO development,
three basic tactics are used:

o Use a traditional programming lan-
guage (either a 3GL or a 4GL)

¢ Use a proprietary dialect of SQL ex-
tended to include procedural constructs

+ Use a code generator to create SCOs.

DB2 for MVS takes the approach of
using traditional programming languages
for the development of stored procedures
(the only procedural SCO that is currently
supported). You can use any LE/370-
supported language to code stored proce-
dures. The current list of supported lan-
guages includes Assembler, PL/I, C/370,
COBOL, and COBOL II. DB2 stored
procedures can issue both static and dy-
namic SQL statements with only a few
specific exceptions.

The second approach is to use a pro-
cedural SQL dialect. One of the main ben-
efits derived from moving to a RDBMS
is the ability to operate on sets of data with
a single line of code. Using a single SQL
statement, you can either retrieve, mod-
ify, or remove multiple rows. But this very
capability limits the viability of being
able to use SQL to create SCOs. Sybase,
Oracle, and Informix all support proce-
dural dialects of SQL that add looping,
branching, and flow of control statements.
The Sybase language is known as Trans-
act-SQL, Oracle provides PL/SQL, and
the Informix dialect is called SPL (or stored
procedure language). Procedural SQL has
far-reaching implications on database
design.

Procedural SQL will look familiar to
anyone who has ever written any type of

SQL or coded using any type of program-

ming language. Typically, procedural SQL
dialects contain constructs that support
looping (WHILE), exiting (RETURN), branch-
ing (G0T0), conditional processing (fF..
THEN...ELSE), blocking (BEGIN..END), and vari-
able definition and usage. Of course, SPL,
Transact-SQL, and PL/SQL are incom-
patible and cannot interoperate with one
another.

A final approach is to use a tool to
generate the logic for the server code ob-
ject. Code generators can be used for any
RDBMS that supports SCOs, as long as
the code generator supports the language
required by the RDBMS product being

used. This approach is touted by IBM’s
DB2 for MVS stored procedures and the
VisualGen code generator. Of course, code
generators can be cre:lteéiufor an};cll):;i
gramming language, inclu roC

SQL dialects such as Transac% g(lL, PL/
SQL, and SPL.

Which is the best approach? Of course,
the answer is: “It depends!” Each ap-
proach has its strengths and weaknesses.
Traditional programming languages are
more difficult to use but provide standards
and efficiency. Procedural SQL is easier
to use and more likely to be embraced by
nonprogrammers, but is nonstandard from
product to product and can result in sub-
optimal performance.

It would be nice if developers had an
implementation choice, but the truth of

the matter is that they must live with the

RDBMS vendor’s approach.
THE DUALITY OF THE DBA

Once server code objects are coded and
made available to the RDBMS, applica-
tions and developers will begin to rely
upon them. Although the functionality
that is provided by SCOs is unquestion-
ably useful and desirable, DBAs are pre-
sented with a major dilemma. Now that
procedural logic is being stored in the
DBMS, DBAs must grapple with the is-
sues of quality, maintainability, and avail-
ability. How and when will these objects
be tested? The impact of a failure is en-
terprisewide, not relegated to a single ap-
plication—which makes these objects
even more visible and critical. Who is re-
sponsible if they fail? The answer must
be—a DBA.

With the advent of server code objects,
the role of the DBA is expanding to en-
compass too many responsibilities for a
single person to perform the job capably.
The solution is to split the DBA’ job into
two separate parts based upon the data-
base object to be supported: data objects
or server code objects.

Administering and managing data ob-
jects is more in line with the traditional
role of the DBA, and is well-defined.
But DDL and database utility experts
cannot be expected to debug procedures
and functions written in C, COBOL, or
even procedural SQL. Furthermore, even
though many organizations rely upon
DBAs to be the SQL experts in the com-
pany, often times they are not—at least
not data manipulation language (DML)
experts. Simply because DBAs know the
best way to create a physical database de-
sign and DDL, does not mean they will
know the best way to access that data.

The role of administering the proce-

44

DATABASE PROGRAMMING & DESIGN



dural logic in an RDBMS should fall
upon someone skilled in that discipline.
We must define a new type of DBA to
accommodate SCO and procedural logic
administration. This new role can be de-
fined as a procedural DBA.

THE ROLE OF THE PROCEDURAL DBA
The procedural DBA should be respon-
sible for those database management ac-
tivities that require procedural logic sup-
port and/or coding. Of course, this job
should include having the primary re-
sponsibility for SCOs. Whether or not
SCOs are actually programmed by the
procedural DBA will differ from shop to
shop. This decision will depend on the size
of the shop, the number of DBAs avail-
able, and the scope of SCO implementa-
tion. At a minimum, procedural DBAs
should participate in and lead the review
and administration of SCOs. Addition-
ally, procedural DBAs should be on call
for SCO abends.

Other procedural administrative func-
tions that should be allocated to the pro-
cedural DBA include application code
reviews, access path review and analysis
(from EXPLAN or show plan), SQL debug-
ging, complex SQL analysis, and rewrit-
ing queries for optimal execution. Off-
loading these tasks to the procedural DBA
will enable the traditional, data-oriented
DBAEs to concentrate on the actual phys-
ical design and implementation of data-
bases. This approach should result in much
better designed databases.

The procedural DBA should still re-
port through the same management unit
as the traditional DBA—not through the
application programming staff. This set-
up enables better skills sharing between
the two distinct DBA types. Of course, a
greater synergy must exist between the
procedural DBA and the application pro-
grammer/analyst. In fact, the procedural
DBA should move up in the ranks from
application programming, building from
the existing coding skill-base.

PROBLEM POINTS

Of course, with every new idea comes
resistance. The following section antici-
pates some of the barriers to acceptance
for a procedural DBA and a possible so-
lution for overcoming the resistance.
Potential Problem #1: “Some DBAs
will not be content in only one role. Of-
ten DBAs are a curious lot who want to
know it all. My company cannot afford
to alienate our highly skilled DBA staff by
changing their job descriptions.”
Potential Solution #1: Many times
this will be a phantom problem. Many

current DBAs do not know (or care to
know) how to program. Those who know
SQL do not want to write COBOL or C
(and many of them do not want to know
the intricacies of procedural SQL dialects,
such as Transact SQL or PL/SQL). Ad-
ditionally, quite a few DBA staffs already
have performance analyst/DBAs who are
more programming literate and design

DBAs who are more DBMS object lit-

B g i

erate. Implementing a procedural DBA
position in this type of organization should
be easier than in most. For those few shops
that have DBAs who do indeed wish to
“know it all,” cross training DBAs with
primary and secondary roles should elim-
inate the resistance.

Potential Problem #2: “We cannot af-
ford the DBAs we have now, how can we
afford more DBAs?”

Potential Solution #2: In actuality,
most organizations can’t afford not to
have procedural DBAs. More and more
of most companies’ business rules are be-
ing implemented in SCOs, which means
the company cannot afford the downtime
and inefficiency when performance prob-
lems or abends cannot be resolved in a
timely manner.

Potential Problem #3: “Our DBAs do
all this now. Why should we split the
tasks into distinct roles when we get this
support already?”

Potential Solution #3: This point could
be true. If so, it is wise to delineate the role
of each DBA and have them specialize.
We specialize in all other areas from pedi-
atricians to interior decorators. Specializa-
tion brings efficiency and rapid response.

However, this assertion could also be
false. Investigate this argument and find
out just what the DBA staff is doing.
They might not have the time to review
every piece of code that goes into pro-
duction. This neglect can be devastating
for UDFs, triggers, and stored proce-
dures since they are intrinsically tied to
data integrity and performance. Many
DBA staffs are overworked and might
not have time to rewrite subpar SQL.
This problem can be thorny for proce-
dural database objects because they don't
affect just one program—they are reused
and potentially can impact every program
that accesses the database. It can also be

problematic for strategic application pro-
grams that have not been thoroughly
benchmarked and performance tested.

Potential Problem #4: “We use multi-
ple DBMS products, each with a differ-
ent technique for coding triggers, stored
procedures, and functions.”

Potential Solution #4: This argument
reinforces the requirement for a proce-

dural DBA. The more diverse and het-

erogeneous your environment is, the more
you need to specialize. It makes sense not
only to specialize by task or role (process
objects versus traditional database objects),
but also to specialize by DBMS product.
Just because someone is a Transact-SQL
wizard, that doesn’t mean they will be
equally adept at user-defined functions
coded in C for DB2 for OS/2 (or even
PL/SQL for that matter).

Potential Problem #5: “No one in my
company can do this type of job.”

Potential Solution #5: If no one can
do this type of job, it just means that
your organization is not prepared for the
database management trials and tribula-
tions of the 1990s—which is tantamount
to admitting that you are poised for fail-
ure. The answer is: “Training!” Seek out
skilled training organizations that can as-
sist you immediately. And consider train-
ing a skilled staff of procedural DBAs to
specialize in SCO and procedural database
administration.

IN A NUTSHELL

As vendors race to provide SCOs to sup-
port business rule implementation in
their RDBMS products, database ad-
ministration becomes more complex. The
DBA's role is rapidly expanding to the
point where no single professional can
reasonably be expected to be an expert in
all facets of the job. It is high time that the
job be explicitly defined into manageable

components.

CrAIG S. MULLINS Is a senior technical advisor
and team leader of the Technical Communications
group at Platinum Technology Inc. He is also the au-
thor of DB2 Developer’ Guide, an in-depth text on
1BM relational DBMS. Craig has extensive experience
in all facets of database systems development and
can be reached onfine via CompuServe at 70410,237
or the Intemet at mullins@platinum.com.

DECEMBER 1995

45



