
Quality Assurance
for Dynamic SQL
Craig S. Mullins
Mullins Consulting, Inc. (for InSoft Software GmbH)
Session Code: V12
Tuesday 2010-Nov-09 @ 9:45 – 10:45 | Platform: DB2 for z/OS

Author
• This presentation was prepared by:

• Craig S. Mullins
• President & Principal Consultant

• Mullins Consulting, Inc.
• 15 Coventry Ct
• Sugar Land, TX 77479
• Tel: 281-494-6153
• Fax: 281.491.0637
• Skype: cs.mullins
• E-mail: craig@craigsmullins.com

This document is protected under the copyright laws of the United States and other countries as an unpublished work. Any use or
disclosure in whole or in part of this information without the express written permission of Mullins Consulting, Inc. is prohibited.

© 2010 Craig S. Mullins, Mullins Consulting, Inc. All rights reserved.

Agenda
• Dynamic SQL – The Basics

• Static vs. Dynamic SQL
• When to Use Dynamic vs. Static SQL

• Drivers of Dynamic SQL Growth
• Packaged Applications (e.g. ERP)
• Modern Application Development

• GUI, web, etc.

• Performance Issues
• Understanding the Dynamic Statement Cache
• BIND options

• Solving Your Dynamic SQL Woes with InSoft’s QA+

Solving Your Dynamic SQL Woes with
InSoft’s QA+

DB/IQ - Family

DB/IQ Family in Version 4.92

 QA Quality Assurance (Base Product)

 IA+ Index Administrator + (Add-On)

 PM PackMan - Package Management

 QA+ QA Plus (Add-On)

 WL+ WorkLoad Detector + (Add-On)

Types of SQL

Dynamic SQL – Basics
Static SQL

• Is unique to DB2
• Access paths established before execution
• Creates a consistent access path
• Requires a BIND to create SQL access paths

Dynamic SQL:
• Usually more flexible but access path can be inconsistent
• Not as common

• At least in traditional COBOL applications

• A “mini-bind” is done automatically by DB2 before execution

Dynamic SQL versus Static SQL

Capability
Dynamic

SQL
Static
SQL

Access paths created at: Run time BIND time1

Access paths in PLAN_TABLE

BIND not required before execution

Dynamic Statement Cache

Uses latest RUNSTATS2

SQL errors detected at BIND

Authorization to tables not required

Flexible: SQL can change

Supported in interpreted languages (e.g. REXX)

So to Summarize…
With Static SQL:

• Beneficial because Access paths are formulated at BIND time and EXECUTE
authority on plans and packages eliminates need for privileges for all objects in the
SQL

• But binding before running program can become burdensome and many of current
development tools provide better support for dynamic APIs

With Dynamic SQL:
• Beneficial because IDEs support Java better, the Dynamic Statement Cache can

alleviate performance penalty of re-formulating access paths and dynamic SQL will
always use the latest RUNSTATS (which may produce a better access paths)

• But compiling statements each time they are executed increases total statement
execution time and SQL errors may not be detected until the program is executed.

Static vs. Dynamic SQL: When To Use Each
• Performance sensitivity of the SQL statement

• Dynamic SQL will incur a higher initial cost per SQL statement due to the
need to prepare the SQL before use. But once prepared, the difference
in execution time for dynamic SQL compared to static SQL diminishes.

• Data uniformity
• Dynamic SQL can result in more efficient access paths than static SQL

is whenever data is:
1. Non-uniformly distributed. (e.g. cigar smokers skews male)
2. Correlated (e.g. CITY, STATE, and ZIP_CODE data will be

correlated)
• Use of range predicates

• The more frequently you need to use range predicates (<, >, <=, >=,
BETWEEN, LIKE) the more you should favor dynamic SQL.

• The optimizer can take advantage of distribution statistics & histogram
statistics to formulate better access paths because the actual range will
be known.

When to Use Static vs. Dynamic SQL (continued)
• Repetitious Execution

• As the frequency of execution increases, then you should favor static
SQL (or perhaps dynamic SQL with local dynamic statement caching
(KEEPDYNAMIC YES).

• The cost of the PREPARE becomes a smaller and smaller percentage of
the overall run time of the statement the more frequently it runs (if the
cached prepare is reused).

• Nature of Query
• When you need all or part of the SQL statement to be generated during

application execution favor dynamic over static SQL.
• Run Time Environment

• Dynamic SQL can be the answer when you need to build an application
where the database objects may not exist at precompile time. Dynamic
might be a better option than static specifying VALIDATE(RUN).

• Frequency of RUNSTATS
• When your application needs to access data that changes frequently

and dramatically, it makes sense to consider dynamic SQL.

Drivers of Dynamic SQL Growth
• Packaged applications use dynamic SQL

• SAP R/3, Peoplesoft, Siebel, etc.
• Easier to support multiple DBMSes that way

• Many newer applications use dyanmic SQL
• Developed on distributed platforms and for the web

• New developers are more familiar with GUI-based
programming environments

• Many of the current development tools provide better support
for dynamic APIs (like JDBC), than they do for static SQL

• Many developers never even sign on to the mainframe
• Java and .NET developers

Let’s Talk About Dynamic SQL Performance
• Many aspects of tuning dynamic SQL are similar to

tuning static SQL
• Find the problematic SQL
• Determine who executed it and from which program

• if possible

• EXPLAIN the statement
• Tune the statement
• Repeat as needed

• Building best practices for tuning dynamic SQL

We’ll speak about each of these on the ensuing slides.

Finding the Problematic Dynamic SQL
There are no DBRMs, packages, or access paths in
PLAN_TABLE(s) to utilize.
So, how do you find problems?

• A problem usually starts with a phone call
• Could also arise from performance reports and/or

performance monitor(s)
• Typically after a problem occurs, though
• May require costly traces

Who Executed the Dynamic SQL?
Can you determine who executed the problem dynamic
SQL statement(s)?

• Why would you want/need to know this?
• Can help to gather information about the query

• parameter markers and host variables
• If it is still running you will want to warn the end user

before you kill the thread… right?
• Remediate by getting the user to stop

running that particular query
…or form of the query.

Well, don’t do
that!

Doctor, doctor, it
hurts when I do
this…

Who Executed the Dynamic SQL? (continued)

But it can be difficult to determine who executed
dynamic SQL

• Why?
• Much dynamic SQL comes from an application server
• Single connection ID problem

• There are four client identifiers that can be passed to DB2
for z/OS when dynamic SQL is executed:

• Client workstation name
• Client transaction name
• Client user
• Client accounting information.

These can be
set using DRDA
or JDBC…

Tuning/Fixing Dynamic SQL Statements
• Take advantage of information in the Dynamic Statement

Cache
• We will cover the DSC in more detail momentarily

• Create a statement cache table
• Run EXPLAIN STMTCACHE STMTID

• Needs SYSADM authority

• Apply traditional SQL tuning best practices
• If you are able to modify the SQL

• What if you cannot modify the SQL?
• Add or modify indexes
• Freshed statistics by executing RUNSTATS
• Reorganize table spaces and/or indexes
• Lobby your application vendors to change the SQL

An Additional Dynamic SQL Tuning Thought
Consider stored procedures for frequently executed dynamic
SQL statements

• Stored procedures can reduce network traffic
• Native SQL stored procedures are relatively easy to code and are

more efficient than earlier types of stored procedures

Caveats:
• Requires modification of the application

• To call the stored procedure instead of issuing the dynamic SQL

• Few tools to manage DB2 stored procedures
• Requires mainframe skills

• May not be helpful if all programmers use an IDE

Dynamic SQL Best Practices
• Threshold and parameter controlled alerting

• Tag “problem” SQL and watch over time
• Compare past/average versus current

• Retain historical details
• Easy identification of poor performing SQL
• Average CPU and elapsed times for each SQL
• Group top x SQL statements for tuning

• Concentrate on biggest consumers for biggest return on tuning
investment

• Identify trends

Introduction to Dynamic Statement Caching (DSC)
• DB2 uses the DSC to minimize (perhaps even eliminate)

dynamic prepares
• There are three (OK, four) types of caching supported:

• No caching
• Local Dynamic Statement Caching
• Global Dynamic Statement Caching
• Full Caching

• The prepared SQL and statement text for dynamic SQL
statements are cached in the DBM1address space

• Local Statement Cache
• Global Dynamic Statement Cache

Implementing Dynamic Statement Caching
• Controlled by several different parameters

• BIND options
• DSNZPARMs
• Application constructs

• Will discuss the parameters on the upcoming slides in the
appropriate place

No Caching
• This is the default

• And the way DB2 worked before the DSC was introduced

• Prepared statements do not persist across COMMIT
• The prepared mini-plan is discarded after a commit

• Except for CURSOR with HOLD statements

• The next time the statement is executed it will
have to be prepared again

Local Dynamic Statement Caching
• Eliminates need for the application to issue multiple PREPAREs for

the same statement
• Implicit PREPAREs are done by DB2

• To enable Local Statement Caching
• Set KEEPDYNAMIC(YES) Bind Parameter
• The MAXKEEPD DSNZPARM controls maximum prepared statements

• Does not affect statement text which is always kept

• Not really a big performance help
• Useful because programmers do not need to keep track of when

COMMITs are issued in order to perform another PREPARE
• DB2 does the implicit PREPARE

• Some reduction in message traffic in a distributed environment is possible

Global Dynamic Statement Caching
• Will reuse prepared statements across units of work

• Within and across program executions
• Must be the EXACT same SQL statement, though
• Prepared statement cached in global dynamic statement cache

• Skeleton Dynamic Statement (SKDS)
• Short Prepare

• To enable Global Statement Caching
• Set DSNZPARM CACHEDYN=YES

• Global Dynamic Statement Caching can offer significant performance
improvement for applications with frequent reuse of dynamic SQL
• No coding changes required

Prerequisites for Global Dynamic Caching
• Statement text must be EXACTLY the same

• Can use parameter markers
• Literals will not work (unless it is always the SAME literal)1

• Other things that must be the same or compatible
• Bind rules
• Special registers
• Authorizations

• Packaged application vendors (e.g. ERP) have designed their
applications to make use of DSC

1 DB2 V10 changes this where literals can be treated like variables

Are These Statements The Same?
SELECT COL1, COL2
FROM TEST_TABLE
WHERE COL3 = ?
AND COL4 = ?

SELECT COL1, COL2
FROM TEST_TABLE
WHERE COL3 = ?
AND COL4 = ?

SELECT COL1, COL2
FROM TEST_TABLE
WHERE COL3 = ? AND COL4 = ?

SELECT COL1,
COL2

FROM TEST_TABLE
WHERE COL3 = ?
AND COL4 = ?

How About These?

• As we just learned, in order to take advantage of the DSC,
the dynamic SQL statement must be exactly the same

• If a literal changes, it is not the same. For example:

• As of DB2 V10, dynamic SQL with literals can be reused
in the DSC
– It is still generally better to use parameter markers for dynamic

SQL than to use literals and rely on this update though

DB2 10: Literals can be treated as “the same”

SELECT NAME, ADDRESS
FROM CUST

WHERE CUSTNO = 1234;

SELECT NAME, ADDRESS
FROM CUST

WHERE CUSTNO = 5678

Full Caching (Both Local and Global)

• Combines the benefits of Local and Global
Dynamic Statement Caching
• Can completely avoid PREPARE operations
• Prepared statement kept in local thread storage

and not invalidated across commits
• Prepare Avoidance

• Enabling global statement caching
• CACHEDYN=YES
• MAXKEEPD>0
• KEEPDYNAMIC(YES)

Flushing the DSC
Invalidate the dynamic statement cache by:
1. Executing RUNSTATS
2. RUNSTATS UPDATE NONE REPORT NO

• Causes any statement in the DSC which is dependent on the
affected table space or index space to be removed from the
cache.

• This is done to allow users who manually update DB2 Catalog
statistics to invalidate the related dynamic SQL in the cache
• The next prepare will re-evaluate the access paths.

• The granularity is at the table space and index level
• Not the table level

Reoptimization (REOPT)

• You can gain additional optimization for (mostly dynamic) SQL using
the REOPT parameter of the BIND command.

• REOPT specifies whether to have DB2 determine an access path at
run time by using the values of host variables, parameter markers,
and special registers.

• As of DB2 9, there are four options from
which to choose when specifying REOPT.

Reoptimization settings can make dynamic SQL
more static …and sometimes vice versa.

REOPT Parameter Choices
REOPT (NONE) –PREPARE determines the access path and
no reoptimization is performed. The bound statement can be
moved to the dynamic statement cache (DSC), if the cache is
being used.
REOPT (ONCE) – PREPARE determines an initial access path
before the host variable values are available. When the
statement is first executed and the host variable values are
known, the statement is reoptimized one time. The hope is that
the one-time reoptimization will provide a better access path
than the initial PREPARE. The statement can be placed in the
dynamic statement cache and reused multiple times.
REOPT (ALWAYS) – The SQL statement is re-optimized each
time it is executed, always using the latest host variable values.
REOPT (AUTO) – Leave it up to DB2 (autonomic?). If changes
in the filter factors for the statement predicates warrant, DB2 can
re-prepare the statement. The newly prepared statement would
be executed and would replace the prepared statement currently
in the Global Dynamic Statement cache.

NOREOPT(VARS)
can be specified
as a synonym of
REOPT(NONE).

REOPT(VARS) can
be specified as a
synonym of
REOPT(ALWAYS).

DB2 V8

DB2 9

Consider binding
static programs with
REOPT(ALWAYS)
when the values for
your program’s host
variables or special
registers are volatile
and make a significant
difference for access
paths.

REOPT Applicability: Dynamic vs. Static SQL
REOPT Parameter Dynamic SQL Static SQL

NONE YES YES

ALWAYS YES YES

ONCE YES NO

AUTO YES NO

ONCE and AUTO are not
valid for static SQL
because they work with
the dynamic statement
cache, which does not
apply to static SQL.

Dynamic SQL Best Practices
• Understand the difference between static & dynamic

• Use appropriate parameters for each
• Implement Dynamic Statement Cache

• Train programmers how to write code that benefits from DSC
• Build threshold and parameter-controlled alerts

• Tag “problem” SQL and watch over time
• Compare past/average versus current

• Retain historical details
• Easy identification of poor performing SQL
• Average CPU and elapsed times for each SQL
• Group “Top x” SQL statements for tuning

• Concentrate on biggest consumers for biggest return on tuning
investment

• Identify trends

And Now ...
Solving Your Dynamic SQL Woes

Using InSoft QA+

• Benefits
• Facilities
• Cache Monitor
• Accumulation

• Neutralization
• Tagging
• Reports
• Searching

• Monitor all activities in the DB2 Statement Cache consequently
• Accumulate and build a DB2 Performance Data Warehouse
• Report vital information on performance problems and heavy

consumers
• Issue alerts on all critical dynamic SQL executed

(local, remote, connected client)
• One service to monitor all dynamic SQL - local applications,

client-server, web-based, QMF, ERP-applications and ...
• Produce a comprehensive picture of the dynamic SQL as basis for

tuning
• Increase CPU savings and delay expensive upgrades
• No expensive DB2 Trace required (318 for statistics is

recommended)
• Available for DB2 V8 and V9

QA+ Benefits

• Threshold and parameter controlled Alert System - automatically
registers all “problem” SQL!

• “snap shots” @ pre-defined periods for a given duration
• All dynamic SQL consolidated and benchmarked together with the

DB2 access paths
• “same” SQL statements optionally neutralized to reduce volume of

data, compare Access Paths and CPU usage
• Average CPU and elapse times for each SQL; easy recognition of

poor performing SQL
• Detailed explain analysis
• View results per DB2 Group, sub system, user identifiers or an

accumulated combination of all

QA+ Facilities

• Easy navigation dialogue - locate most frequent & most costly SQL.
E.g. SQL with highest no. of rows returned, Getpages, heaviest CPU
consumers, hottest objects, indexes not used ...

• Tune the top “n” hot SQL statements
• Tag “problem” SQL and follow/ compare progress thru time.
• Reports include - Period Analysis, Trends, CPU Consumers, Objects

accessed ...
• System reports include Cache activity and recommended

EDMCACHE size.
• Groups can be (re)defined to reveal CPU consumers

per User-Id. (Primary or Secondary) and / or Tokens
• Interface to QA enables Quality Assurance for all monitored SQL and

full explain functionality for tuning purposes
• Interface to IA+ (Index Advisor) enables “index tuning”

QA+ Facilities (continued)

Cache Monitor Batch in a Single System

QA+ Cache Monitor

Job runs for ... minutes or unlimited
Do until time expired or quiesce pending

1. Obtains Cache snap-shot
2. EXPLAIN all “new“ STMTs
3. Check ALERTs pending
4. Save all required data in QA+ DB
5. Job waits ... minutes (1 - 60 mins.)

Continue

Reports
QA+
DB

WTOs
ROUTCDE(..)

Reports include :
1. Statistics on ALL + SINGLE periods
2. TOTAL, AVERAGE & MAX values
3. DELTA values from period to period
4. “Hottest” SQL, Objects, Indexes, Consumers
5. Non-used Indexes

QA+ Cache Monitor

QA+ Query System (Test/Dev.)

Production Systems

QA+ Cache Results
DB2 Group

Cache Monitor Accumulate Production Systems Results

Jobs run per DB2 Group or member (SSID)
Scheduled - e.g. 9:00 until 17:00 interval=60 mins.

Additional step = QA+ UNLD utility. User may
specify “critical” only. E.g. top 500 “hot” dyn SQL

QA+ DB
Accumulated
Performance
Data
Warehouse

WTOs
ROUTCDE(..)

Reports include :
1. Statistics on ALL, SINGLE or ACCUMulated periods
2. TOTAL, AVERAGE & MAX values
3. DELTA values from period to period
4. “Hottest” SQL, Objects, Indexes, Consumers
5. Neutralized / De-Neutralized / Tagged Statements

QA+ Cache Results
DB2 Group PRD2

QA+ Cache Results
DB2 Group PRD1

QA+ Cache Results
DB2 Group PRDn

QA+
UNLD
Utility.
“Critical“
Only

UNLD.PRD1

UNLD.PRDn

UNLD.xxxx

WTOs
ROUTCDE(..)

WTOs
ROUTCDE(..)

QA+
LOAD
Utility.
“Hot“
Prod.
SQL

Jobs load production UNLD.dsns as ACCUM()
Additional step = QA+ NEUTRALIZE - locates
same SQL

QA+ Accumulation

• Automatically consolidates “like” SQL statements
in multiple phases:
1. Group DML accessing same base object names
2. Eliminate ‘xxx’ and other literals
3. Optionally eliminate object “creators” and “schemas”
4. Process all “inter-changeables” - e.g.

a) WHERE A=1 AND B=2 compared to WHERE B=2 AND A=1
b) SELECT Block1 UNION SELECT Block2 or Block2 / Block1
c) and many more ...

5. Compute SIMILARITY FACTOR. 100% = identical, 95% etc.

• DB/IQ QA+ is the only z/OS DB2 product going beyond item 2)

QA+ Neutralization

• User has found interesting dynamic SQL and tags it with “tag name”

• All “like” SQL statements are also tagged with “tag name” when found

• Applies to all sub systems participating in QA+ database

• DB/IQ QA+ is the only z/OS DB2 product tagging “like” dynamic SQL

QA+ Tagging

• Reports can be generated at any time
• All reports are optional
• Most reports also put to a data set -> “host” and CSV format
• According to multiple criteria (e.g. AVG_Timings, Totals,...)

• totals and averages (over all and single periods)
• "hottest" objects (qualified and unqualified) over all periods
• "hottest" and “unused” indexes over all periods
• "hot" consumers / tokens over all periods
• "hottest" SQL over all periods (opt. with SQL text and explain)
• "hottest" SQL for single periods
• "SAME Hot" statements over ALL periods
• "hot" SQL. CPU >= 5 * higher than DB2 estimated
• "Tagged” statements over ALL periods – with SQL text & explain

QA+ Reports

Cache Monitor Batch Output - “hottest" Objects found over all measured periods

==
DB/IQ QA+ Cache Monitor IDBTBQP V. 4.92 running in DB8G. "Hot" Objects (Qual.) over ALL Periods

MINEXEC(10) MAXRANK(50) HOTCOLUMN(AVGCPU)
==
Rank Object STMTIDs EXECs CPU Time Elapse Exec/CPUs Exec/ELAP
---- --- -------- ---------- ---------- ---------- --------- ---------

1 SYSIBM.SYSPACKAGE 25 16 2.1 9.6 0.13309 0.59859
2 INSOFT.TDB1QAPLUSSTMTD 12 24 3.0 7.4 0.12348 0.30715
3 INSOFT.TDB1QAPLUSPERIODS 12 24 3.0 7.4 0.12348 0.30715
4 SYSIBM.SYSTRIGGERS 14 30 0.3 1.3 0.01094 0.04200
5 SYSIBM.SYSSYNONYMS 8 80 0.4 1.9 0.00557 0.02371
6 SYSIBM.SYSSEQUENCES 6 57 0.3 0.7 0.00517 0.01311

...
16 SYSIBM.SYSCHECKS 2 764 0.3 1.6 0.00044 0.00206
17 INSOFT.TDB1TUSE_MA 34 6286 2.3 17.6 0.00037 0.00281

...
28 SYSIBM.SYSTABLES 25299 37395 5.0 27.7 0.00013 0.00074

...
50 INSOFT.TDB1TUSE2 2 2 0.5 2.6 n/a n/a

Ranking -9999 unlimited. 50=top 50.AVG - calculated min. 10 EXECs

QA+ Report Sample Report 03

Cache Monitor Batch Output - “hottest" Consumers found over all measured periods

==
DB/IQ QA+ Cache Monitor IDBTBQP V. 4.92 running in DB8G. "Hot" CONSUMERS over ALL Periods.

MINEXEC(10) MAXRANK(50) HOTCOLUMN(AVGCPU)
==
Rank CONSUMER TYPE EXECs GetPage RowExam RowProc Sorts IXScans TSScans CPU Time Elapse Exec/CPUs Exec/ELAP
---- --------- -------- ------ ------- ------- ------- ----- ------- ------- -------- -------- --------- ---------

1 INSOFT CURSQLID 177590 18621K 243469K 604216 25528 106983 89345 4:03.1 16:02.4 0.00137 0.00542
2 INSO32 CURSQLID 1004 8160 18350 1559 393 306 1112 0.2 0.5 0.00019 0.00053
3 INSO42 CURSQLID 244 1120 973 650 110 20 332 0.0 0.2 0.00017 0.00066
4 INSO22 CURSQLID 323561 1507035 1784900 457949 12956 386948 53354 24.5 1:43.6 0.00008 0.00032

---- --------- -------- ------ ------- ------- ------- ----- ------- ------- -------- -------- --------- ---------
1 JAVA1 GROUPID 1272 29146 37859 11481 508 18734 1455 0.9 3.2 0.00068 0.00250
2 ALLUSERS GROUPID 502399 20138K 245273K 1064374 38987 494257 144143 4:27.8 17:46.7 0.00053 0.00212
3 INSOFTDB GROUPID 501127 20108K 245235K 1052893 38479 475523 142688 4:26.9 17:43.5 0.00053 0.00212

---- --------- -------- ------ ------- ------- ------- ----- ------- ------- -------- -------- --------- ---------
1 INSO42 PRIMAUTH 245 20712 19291 9809 111 18339 333 0.7 2.5 0.00268 0.01040
2 INSO22 PRIMAUTH 501127 20108K 245235K 1052893 38479 475523 142688 4:26.9 17:43.5 0.00053 0.00212
3 INSO32 PRIMAUTH 1027 8434 18568 1672 397 395 1122 0.2 0.6 0.00020 0.00061

---- --------- -------- ------ ------- ------- ------- ----- ------- ------- -------- -------- --------- ---------

QA+ Report Sample Report 08

==
DB/IQ QA+ Cache Monitor IDBTBQP V. 4.92 running in DB8G. "Hot" Statements over ALL Periods. Accum-id: INSOPROD

MINEXEC(10) MAXRANK(50) HOTCOLUMN(AVGCPU)
==

Rank Ident1 Ident2 STMTID PROGNAME TYP EXECs GetPage RowExam RowProc Sorts IXScans TSScans CPU-T. Elapse Exec/CPUs Exec/ELA
---- -------- -------- --------- -------- --- ------ ------- ------- ------- ----- ------- ------- ------ ------ --------- --------

1 NRW Köln 143411 IDBUPS3 SEL 12762 16201K 241580K 12762 0 0 12762 2:44.3 6:40.9 0.01288 0.0314
2 BERLIN Kreuzbrg 247 IDBUBI30 SEL 397 353330 873003 216 397 0 588 2.0 5.1 0.00504 0.0129
3 BERLIN Kreuzbrg 242 IDBUBI35 SEL 120 108128 31800 160 360 120 360 0.5 1.3 0.00428 0.0110
4 BERLIN Kreuzbrg 202 IDBUB30 SEL 28 25184 18592 24 56 0 76 0.1 0.3 0.00426 0.0110
5 NRW Köln 143365 IDBUB30 SEL 30 269 60 30 30 60 60 0.0 0.4 0.00145 0.0141
6 NRW Köln 143382 IDBUBI35 SEL 1256 13456 51764 25254 1256 29022 1256 1.4 10.2 0.00110 0.0080
7 BERLIN Kreuzbrg 220 IDBUBI35 SEL 350 2612 1050 7000 350 1400 350 0.3 0.5 0.00079 0.0014
8 BERLIN Kreuzbrg 203 IDBUB30 SEL 45 176 90 45 45 90 90 0.0 0.1 0.00062 0.0013
9 NRW Köln 143364 IDBUB30 SEL 17 528 289 15 17 0 34 0.0 0.1 0.00057 0.0070
10 BERLIN Kreuzbrg 226 IDBUBI35 SEL 579 8531 579 579 579 1158 579 0.3 0.8 0.00045 0.0013
11 NRW Köln 143389 IDBUBI35 SEL 24 1128 8924 24 0 0 392 0.0 0.1 0.00040 0.0036
12 NRW Köln 143386 IDBUBI35 SEL 1321 13314 27413 26092 1321 2642 1321 0.5 3.6 0.00039 0.0027
13 NRW Köln 143388 IDBUBI35 SEL 185 2474 186 186 185 371 185 0.1 0.8 0.00039 0.0043
14 NRW Köln 143384 IDBUBI35 SEL 1277 12821 26647 25370 1277 2554 1277 0.5 3.7 0.00037 0.0029
15 NRW Köln 143363 IDBUB30 SEL 1608 953 0 120 0 0 1608 0.6 4.3 0.00035 0.0026
16 BERLIN Kreuzbrg 162 IDBTBQP1 SEL 160 969 787 304 161 0 322 0.1 0.1 0.00033 0.0008
17 BERLIN Kreuzbrg 224 IDBUBI35 SEL 426 2599 426 7684 426 852 426 0.1 0.3 0.00033 0.0008
18 NRW Köln 143420 IDBUBI20 SEL 55 342 263 263 55 0 110 0.0 0.0 0.00031 0.0003

Cache Monitor Batch Output - “Hottest” SQL over ALL periods

Report via Accumulation

Identify system reference

QA+ Report Sample Report 09

==
DB/IQ QA+ Cache Monitor IDBTBQP V. 4.92 running in DB8G. Tagged Statements over ALL Periods. Accum-id: INSOPROD
==
TAG: MYTAG_002
STMTID: 242 Progname: IDBUBI35 Cached: 2009-09-11-13.33.50.152657
Ident1: BERLIN Ident2: Kreuzbrg
Execs: 120 GetPage: 108128 RowExam: 31800 RowProc: 160
Sorts: 360 IXScans: 120 TSScans: 360
CPU Time: 0.5 Elapse: 1.3 Exec/CPUs: 0.00428 Exec/ELAP: 0.01101

SELECT F.RELNAME, F.COLNAME, F.COLSEQ, R.DELETERULE, R.REFTBCREATOR, ...
... more

--- statement EXPLAINed as follows ---
... more

TAG: MYTAG_002
STMTID: 143403 Progname: IDBUBI35 Cached: 2009-10-09-15.11.26.294770
Ident1: NRW Ident2: Köln
Execs: 164 GetPage: 982 RowExam: 1678 RowProc: 254
Sorts: 164 IXScans: 637 TSScans: 164
CPU Time: 0.0 Elapse: 0.2 Exec/CPUs: 0.00018 Exec/ELAP: 0.00130

SELECT F.RELNAME, F.COLNAME, F.COLSEQ, R.DELETERULE, R.REFTBCREATOR, ...
... more

Cache Monitor Batch Output - "Tagged” Statements over ALL Periods

tagged as MYTAG_002 – STMTID 242 was
cached in DB9G (identified by BERLIN/Kreuzbrg)
2009-09-11-13:33

tagged as MYTAG_002 – STMTID 143403 was
cached in DB8G (identified by NRW/Köln)
2009-10-09-15:11

QA+ Report Sample Report 14

InSoft Software --------- QA Cache Search thru SnapShots --INSO22--2009/1 18:35
===>
Snap shots between: 2009-10-13-00.00 and 2009-12-31-23.59
ACCUM-ID Ident 1 Ident 2
PRIMAUTH * CURSQLID * User Group DBAS
PROGRAM * EDM STMTID User Tags
TOKEN

Following values num or numK or numM
SQL EXEC >= 1000 GetPage Requests >= 0
SyncReads >= 0 BuffWrites >= 0
RowsExamined >= 0 RowsProcessed >= 0
Sorts >= 0 PGRP_Created >= 0
IX_Scans >= 0 TS_Scans >= 100

Following values in seconds
Tot_Elapse >= 5.00000 Tot_CPU >= 0.50000
Tot_SYNCIO >= 0.00000 Tot_Lock >= 0.00000
Tot_SYNCEX >= 0.00000 Tot_Global >= 0.00000
Tot_OthReads >= 0.00000 Tot_OtherWrit >= 0.00000
Avg_Elapse >= 0.00000 Avg_CPU >= 0.00000
Avg_SYNCIO >= 0.00000 Avg_LOCK >= 0.00000
Avg_SYNCEX >= 0.00000 Avg_Global >= 0.00000
Avg_OthReads >= 0.00000 Avg_OtherWrit >= 0.00000
String within SQL text %DSN_%

Cache Monitor Dialogue - Search Input

QA+ Search Engine

Search by Accumulation or
when captured

Search USER Group or
TAGGED Statements

Search for a specific statement ID

Search for statements exceeding
specified values

Questions ?

Please visit us @ Booth 7

www.insoft-software.com

Craig S. Mullins
Mullins Consulting, Inc.
craig@craigsmullins.com

Session V12
Title Quality Assurance for Dynamic SQL

Colin Oakhill
Insoft Software

co@insoft-software.de

